[ AD- 0B 12k

RIA-80-U621 UNCLASSIFIED
USADACS Technical Library
: AR 608 726
-’“ 5 0712 01013432 7
l ADAPTIVE STATISTICAL PROCEDURES IN RELIABILITY

AND MAINTENANCE PROBLEMS TECHNIC Al
) LIBRARY

J.H. Venter and J. L. Gastwirth

Technical Report No. 99
October 12, 1964

Processed for . . .

DEFENSE DOCUMENTATION CEN'TER
DEFENSE SUPPLY AGENCY

- CLEARINGHOUSE

FOR FEDERAL SCIENTIFIC AND TECHNICAL INFORMATION
C )

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS / INSTITUTE FOR APPLIED TECHNOLOGY

UNCLASSIFIED

. - s




NOTICE TO DEFENSE DOCUMENTATION CENTER USERS

This document is being distributed by the Clearinghouse for Federal
Scientific and Technical Information, Department of Commerce, as a
result of a recent agreement between the Department of Defense (DOD)
and the Department of Commerce (DOC).

The Clearinghouse is distributing unclassified, unlimited documents
which are or have been announced in the Technical Abstract Bulletin
(TAB) of the Defense Documentation Center.

The price does not apply for registered users of the DDC services.




ADAPTIVE STATISTICAL "ROCFDLJRES [N RELIABILITY
JAND MAINTENANCE PROBLEMS

BY
J. H. VENTER and J. L. GASTWIRTH

TECHNICAL REPORT NO. 99
OCTOBER 12, 1964

: D{‘ NAVAL "Cnr ‘fx! H, AND AIR H"’“E "*’-:(“'- Si-
SCIENTIFIC RES AI\Cn RY CORTRACT KO,
Nonr—22"\'::c) INR 342-022)

DEPARYMEMT OF STATIS
TODE et i

an‘» N LAl\’!VE\\S
STANFCRD, CALIFORNI

WRCAVIAS SPCNSORED BY THe ARMY RoSELICH O-0108,
i

T T T e e T R N




e m———

[T Tt

RN WP N 5 §

TN oY

AT

| QP

ey

.
A et o BT AT e T N SRt
r .2 ’
o =

[

._ ADAPTIVE STATISTICAL PROCEDURES IN

RELTABILITY AND MAINTENANCE FROBLEMS
by

J.L. Gestwirth and J.H. Venfer

October 12, 1964

TECHNICAL REPORT NO. 99

PREPARED UNDER CONTRACT Nonr-225(52)
(NR-342-022)
FCR

OFFICE OF NAVAL RESEARCH

Reproduction in Whole or in Part is Permitted for
any Purpose of the United States Govermment

DEPARTMENT OF STATISTICS'
STANFORD UNIVERSITY
STANFORD, CAT.IFORNTA




ST L
B

B NTY ST _ﬁ_"-__? e2on
ro—— - T .

=

——

ADAPTIVE STATISTICAL PROCEDURES IN
RELIABILITY AND MAINTENANCE PROBLEMS
by -

J.L. Gastwirth and J.H. Venter

1. . Introduction.

Consider the following problem: A "system" (or "item", "instrument®,
etc.) with a "lifetime" that has the distribution function F(t) 1is to be
inspected at times tl,ta;... . If inspection reveals that the systeq is
inoperative, it is repaired (or replaced); otherwise nothing is done.

The general problem is to choose the inspection plan, i.e., the seQuence
tl’te"" » in an optimal way in a suitable sense. Results in this con-
nection can be found in articles [4], [2] where further references can be
found. In these studies it is assumed that the distribution function
F(t) is known. Although this is usually not the case in practice, the
resulting statistical questions have nét Yet received much attention

(see [4], p. 112,113).

In the present paper the case 1s considered in which the system

has an exponential lifetime, i.e.,
. 0 if t <0
(1.2) F(t) ={ ",
l-e if-t>0,
with A(> 0) an unknown parameter, and several adaptive or éequential
inspections pléns are proposed.. These plaﬁs use information, as it

becomes avallable througi:. .nspection, to estimate the unknown paraﬁeter
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A and in this manner épproach the plan that would be optimum if X.
were known. This idea is, of course, not new; it has already been
used by Chernoff and others [3], [1] in their papers on sequential de-
sign of experiments to which this paper is related.

. The plans proposed here are of two general types, viz.,
(1) plens based on maximum likelihoo.d methods, .
(i1) plans based on refinements of the ﬁobbins-Monro stochastic approxi- |
mation method [8]. . ._
The asymptotic properties of thes.e two ty’pes.of plans are generally the
same, but from a practical point c;f view the latter seem preferable in
that they are computationally simpler and involve storage of a minimum

of past information.

2. Notation and general assumptions.

Unless otherwise stated, we shall assume that there exist known

constants A and X with O <A <X <=  such that
(2.1) e () X)) .

Many of the results 'bel.ow can be formulated and proved if \ is rew
stricted only by O < M < e, but (2.1) simplifies things considerably
and is not unrealistic from a practical point of view in that ) .may
be arbitrarily small and * arbitrarily large.
We shall also assume that inspections .and repairs are 1nstantanéou€
Lét (2, P) be a probability measure spacé. All random variables
to be introduced below will be assumed to be defined on (9,d.,P). A
generic elem;‘:nt of 0 will be denoted by w and we sh_ali_fpllow the .-
usual practice of exhibiting or omitting the argume.r;{ e H.o;l random

variables according to convenlence.
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Now consider an inspection plan defined by specifying the inter-

inspection times

(2.2) Ty =ty Ty =ty o, 122,5,...

as follows. Let [Un) be an arbitrary sequence of random variables
the Jjoint distribution of any finite number of which does not depend
on the unknown X. Take Tl = max[O,Ul} and define (Tn) iferatively
by

(2.3) Tnfl = max{0, fn(Yl,...,Yh) + Un)

for n=1,2,... . Here, each Yi;_i=1,2,;}. is a random varisble with

conditional distribution given (Yi""’Yi-l’Ti""’Ti) specified by

.{ 1 with probability ™My
Y - .

(2.1) = ,

i

»

0 with probability 1l-e

ile., Yi =0 1if the 'ith inspection reveals that the system is inopera-

tive and Y& =1 otherwise. Also, fn is & real-valued measurable
function of (Yl,...,Yn), functionally independent of \. Intuitively,
after n inspections, the next inspection time Tn+l depends on the
past observations (Yl,...,Yn) through f while U allows for
additional randomization. .

"The class of all these inspection plans will be denoted by J9-and

a generic element of dg—by I.

3.  Maximization of information.

We define the average information obtainable from a plan I after

n inspections by
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(3.1) 3_(1,0) = 'n'.l}z[‘}a log Ln(x)]2

where Ln(x) is the likelihood function of A based on (Yl,...,yn,

Tl,.u.,Tn). Also let,

(3.2) I(I,M) = lim inf J (I,3) ,

n— o

and we call J(I,\) the limiting average information obtainable from

plan I.

In this section we consider the problem of maximizing Jn(I,X).
and J(I,A) by a judicious choice of I. The relevance of this
problem to efficient estimation of A is well knqw; (FS],.[6]) and
need not be discussed here.

Theorem 3.1l: For each n, for all A and for all I

(3.3) J (I,X) < x'lwx(a_xTx)

where Tx is the solution of the equation

(3.4) a1 gor.

Remark: T, = a7t loé p and T, is the 100(1—p)—th.percéntile of the
exponential distribution where

(3.5) p = -203 .

Proof. The conditional probability of oﬁserving Yi,.{.,Yn given
(Ul,.{.,Uh) is

n | Coaps 1-Y.
(3.6) (MY H e

i=1

" The @iét;ibutioﬁ of (Ul,...,ﬁn) being independent of )\, we find

b
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5 log Ln(x)

Writing, temporarily,

~ATy
X o= Ti(Yi~e )/ (1-e

we have, for J > 1,

_-XTJ
E(XiXJ) = E{XiTJ(l-e

0

because of (2.4) Hénce,
d - 2
E[ax log Ln(h)]

©

B Xy

ATy -2
E{Ti(lee WY sy

H M HMB

=M

-hTi)-l -\T

2
Ti(l-e e

-XTX)~le-XTh

< (1-e

since the function T2(l—e

(3.3) follows.

$rv, + § e Yo
- T.Y, + 1-Y,)T. e l-e )
21 i1 1= 1771

Ty

.

23 m (e /e )
1 |

—hTi) ,

&l

-1 -\T I
) E[(Yd'e J)lyl’""Yj-l’Tl""’?J]]

-A\T4,2
e ) Iyl, ..,Yi_l,Tl,...,Ti]]

i .

s

-hT)—le-hT T .

is maximized by T = \

Thus,

Equality in (3.3) is attained if and only if T, =T, a.s. for
each'i, i.e., if \ were known, the optimal inspection plan in the
sense of maximizing Jn(I,X) for esch n and )\ would call for periodic
inspections with inter-inspection times Tx. However, within the classcfh

(1.e., wvhen X\ is unknown) there exists no optimal plan.

.
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In order -to choose among the plans in J’ we have to use a different

criterion.  Thus, we might require that inf -Jn(I,)L) be maximized

1] re(x, %) .
for each n, i.e., seek the maximin plan. From (3.3) it follows that
' such a plan exists in J and consists of taking .'1‘1 = TX for.eac'h .1.'A
This type of criterion does not take into account the information about
% that becomes av.ailable as inspection proceeds. Plans with this pro-
perty can be studied by using the criterion J(I,)).
Definition: An inspection plan I 1is éaid to be éap_tive (relative.
to I(I,\)) 1f |
(3.7) . I(L,0) = x’_%ﬂzﬁg) .
We shall now define and discuss a few adaptive plans.
(1) A Meximum Likelihood Plan. o
The following plan is denoted by ML. ILet '1‘1 be an arbitrary
num‘per such that
. . 'I\)-C'S Tl < Tk .
Having defined T,,...,T ~ and observed Tiseee, Y, we compute the
maximm likelihood estimate A  of X, i.e., 1f Y,=1 for 121,...,n
: let p =2 and ‘otherwise let u be the unique solution of the equation
& n S . '
j (3.8) Yo, (y-e /(e Ym0,
L in A then | "
: (39) ) M = max{}, !pin['i.-,pp)) :
| Then we take ~ 0 . m T e o
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(3.10) . T, =T

n=l,2,... .

Theorem 3.2: The ML plan is adaptive.

Proof. We show firstly that,

(}.ll) M -\ &.5. 85 N —®
and for this it suffices to show that
(3712) ) o SN Codo as n -e .
Now
P(¥;=1, 1<1<n)
= P(Y,=1, 1 <1 <n-1)P(Y=1]¥,;=1, 1 <1 < n-1)

XT}-

.

< P(Y;=1, 1<1i<n-lle
Tterating backwards we have

-n\T
P(Y;=1, 1 <i<nj<e 2.

Since P{Yi,=l, 1<i<w} < P{Yi=l, 1 <i<n} for each n, we have

(3.13) PY,<, 1 <1 <@} =0.
Next let p> X and & >0 such that (u-x)Ti > 8% and let -

(3.14) e = ul(u-M)T5 - 8] .
Consider some wefl and suppose that

(3.15) p < lim sup un(a)) <u+e€.
n
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Then there exists a sequence [nk]' and an integer k., such that for

1
ali.k>kl
p<p (w) <p+e
%

and, by (3.13) we may also suppose that for some i < n Yi(a)) £ 1.
1

Hence, from (3.8), for k > X

P u T, -p T
0=y Ti(Yi~e u“k 1y/(1-e unk i)
1

P

"k -uT,  -uT
(5.16) ) TiYi/(l-e‘(“+€)Ti) -Ym e e by
1 1 -

AT : B  -uT, = -uT
Tie i/(l_e‘(U'he)Ti) _ z Tie i(l-—e i) +E
£ .

o

P

where

-\

T .
tn = ? 7, (f,-e 1)/ (1o~ (Hre)Tyy B

Writing', temporarily,
X, =T, (Y -e')‘Ti)/(l-e'(“+€)T1) )
i iti ’ .
we have

ElX |X,-000% 4]

E[E[xnlYl, ceesY 35T ] lxl, o .,xn_l}

1]

- - Y .
B(T, (1-e (nte)Ty) ]'E[(Yn-e )] A B TSN T [ KA )

-
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_ 2, -(ut+e)T (-2 ~AT (2 .
Var(x ) = E{T (1-e n) “E[(Y_-e"""n) IYl,...,Yh_l,Tl,...,Tn]]

]

E{Ti(l-e-(u+€)Tn);2é-xTn(l-e-XTn)]

INn

onB(1.e (H¥E)Try-2
<o
Hence, by Theorem E, p. 387 of (7],
-1
n gn-)O a.s. 8S n-w© ,

In particular, we may suppose that for our w,

(3.17) n]_(lgnk(a)) -0 as k —o,

The first two terms on the right in.(3.16) are

Py

y Tie_xTi(l-e-uTi)-l[(l-e-uTi)(l-e-(u+€)Ti)-l-e-(u-x)Ti]
T

and using the inequalities

(l-e-uTi) (1-¢” (u+€)Ti)-l > (l+€/p)-l

M, < (uenr) ™

this expression is greater than

DY - -
¥ e [(re/w) 7 - (e(u-n)Ty) T
1

n
(3.18) > 8-t Y ey
. 1 .

> n o)t

vhere we have used (3.14) and the fact that 'I‘x < Ti

< T Therefgré,
dividing (3.16) by n and letting k —o vhile using (3.17) and

(3.18), we get
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which is a contradiction. Hence

-

' . Plp < lim sup y_ < p+e) = 0 .
' n>wo R

Yy .. r

It is also readily shown that ?P:{"iin.i"'-.sup .'u'r'l.= Lo] = 0 (in fact B, < T%le)”T_J_S B.8.).

n— oo
‘Thus it follows that
P(. < Xim sup i } = O »
nse 1
By a similar argument we show' that

P{lim inf p < A} =0
n-» o

and these two results yield (3.12).

Now, since Tx is a continuous function of X, it follows from

(3.11) and (3.10) that T, »T, a.8. a5 n -, Also,

© 1B o oaar, ATl
J (M) =EnY 12 i(1-e 1)
n T i

and hence it follows from the dominated convergence. theorem that
2 AT ATy -1 '
JOML,N) = Te  Mi-e M) =2 1T)‘(2->»Tx) s

concluding the proof of the theorem. It is also possible to modify'

Wald's proof of the consistency of the maximum likelihood estimator

{11} to show that xn —SA B.8..

(11) A Stochastic Approximation Plan.

The following plan (denoted by SA) is based on the Robbins-Monro

stochastic approximation method [8]; it exploits the fact that oy

10
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" corresponds to the 100(1-p) & 79:7-th percentile of the exponential dis-

tribution, independent of A. The plan is defined as follows:

Choose T, arbitrary in ['1&,'1‘%] and after defining Ty, eeesT, let

-1
xn = - Tn log p ,
' -1 -1 -1
(3.21) Ay =2 P = - T (plogp),
o : -1
and T .q = mex(Ty, min(T}_, T+ A (Y -p))) ,

n=l,2’ooa .

For the rationale behind this plan we refer the reader to [8] and [10].

Theorem 3.3: The SA plan is adaptive.

Proof. It suffices to show that

(3.22) Tn_)TX a.5. as n .

Writing

-1 -AT
W =n An(Yn-e

n n) P

it follows from Theorem D, p. 387 of [7] that

(3.23)

Wk converges 8&.S. &8 n —o ,

=M

Now, suppose that for some we for which (3.23) holds we can find a -

_ sequence (nk] such that

(3.24) - Tnk(w) ST, 88 k -,
Then we shall show that
(3.25) | . Tn(co) -T) &as n .

Let (> 0) be small enough so that

11
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(i‘x‘e, T)""'G‘) C (Tx, T)".) *

There exists an integer ke such that

|Tn1{(w)-Tx| <ef2 for all k> k_,

|.m§wil <e/b . for all m> nke, and
all j >0,
and
(nk;z)'lAnk” <e¢/h forall k>k_ end
(3.26) | ell: £>0 .

Let k>k_ be fixed end consider the behavior of Tn;m, 0=0,1,2, +0s .

Suppose 'I‘n -T, >0 (a similar argument will hold otherwise). From

X
(3.21) N
-AT
-1 -AT
T -1, =T -T +n A (e D "™\ +w
nk”f A n A n -e
< T - T + W < €
me My

If Tnk+l -7 > 0, then repeating,

Tnk+2 - TXSTnk - TX + Wnk_-i' Wnk+lS€ .

Repeating this argument we find that if

Tnk-ﬂn - TX >0 for m=0,l,...,£-1
then

|T11k+m - Tx' < € for m=0,l,...,l-l » .
Suppoge' tlhat Tnk'hi - T)Y 50 f]!laen

12
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l

E=5

+2 A
* ol Mp 421 AT

= Tnk+£-l - TX + (nk+£-l) Ank_+£-l(e nk -eTTA) + wnk+£-1

> - (nk”'l)-lAnkw-l + Wﬁk”_l

> - ¢/2.
Now we apply the same argument but starting with Tnk+ 2 instead of T
It follows that, for all m,

,'Tnk+m S TX| <e,

and (3.25) follows.
.To conclude the proof of the theorem we sﬁa].l now show that for

almost all w, T, 4s a limit point of the sequence [Tn(w)). Fix

by
o and let [Tn } be a subsequence converging to T,s 88Ys with
T

Toe [Ti" TA.]' We shall suppose that TO > T the other case being

X’
similar.

Let e(>0) be such that T,+e < T -€. There exists r_ such

that
3 lTn - Tol <e¢f/2 for r> T s
r
S
!{wi]<e/l+ for m>n_, >0
m €
and
' -1
>
(3.27). (nr+£) _Anr” <e¢/b for r> r, £>0.
-AT, -X(TX+€)
et ¢ =e -e . Then, from (3.21), for r > r
T =T ST - -enlA +W_ .
nr nr r I.lr nr
If an - TX > €, then we repeat to obtain

13
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o 42 N N " c[nr _An +(nr+l) A, +l] W+ wn
b Tr r T .

+1 °
T

If again T

n +2 A +m
T m. T

it follows that there exists an integer 2 such that Tn +2 - T)\. <e
T

while an+2-1 - T, > €. Then, from (3.21)

. -1
an” -T, > - (nr+£-l) Anr”-l + wnr+£-l > -€,

i.e.,

<e

IT )\'I —_— d

n_+4 = &
Hence, for each € there exist k guch that ITk-T}\.I < €, i.e.,
(Tn] *has & limity: point at T)»’ and the theorem follows.

As far as the criterion. J(I,\) is concerred, the ML and SA .plans
are equivalent; however, the plan leading to a sequence [Tn} vhich
converges fastest to T)» seems preferable in th.at this plan would
generally lead to the largest average information J'n('I,K) for finite n.
One possible way to judge the rate of éonvergence of {Tn] is to con-
sidz_ar the variance of the asymptotic distribution of’ fﬁ (Tn'T)»)' The
asymptotic distributions of ,/E (Tn—"l‘x) for both plans considered

[ML and SA] are given in the next theorem.

Theorem 3.4 For both the ML plan and the SA plan, we have

(5.28) /3 (r2m) Seo, a-ppa?)

(3.29) 75 0 dnio,apr ),

N _
where N(up,0”) denotes the normal probability law with mean p and

2
. variance ¢ .

1h

- T, > €, we repeat as before; since Y (nI_-i'm)"lAn = o,
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Proof. First consider the ML plan. Substituting w, for XA in (3.9)

we have
n AT, -u T -p T
i ni ni _
(3.30) %Ti(e e T )/(1-e TN e =0
where
n =AT -pn T
_ ) - i _ ni
g = § T, (Y;-e.  7)/(1-e _) 0

By a central limit theorem for non-independent random variables such as

Theorem C, p. 377 of [7], or Lemma_6, p. 377 of [9] or Lemma 4, p. 238
of (10}, we have’ . .

=AT -ATy,

3 Y% Lo Mael M) = w000 ) L

Since 1l-e ¥ = x[1+g(x)] where g(x) -0 as x -0, (3.30) can be

. written

n =AT - -1
(3-32)  /Alny-N)n : e’ 1(1-e M0 ) T [aeg((u 0T, = AW

Since

-AT -n T -
Un i) l[

-1¢ 2 M
nt ) T 1(1-e 1+g((u -MT)] -
I

)-l = 'I'ip(l-p)-l ‘a.s. asn -w,
(3.30) and (3.29) yield

VaG, S, )
Writing /H(xn-x) =ﬁ(un-x)'+ €),» 1t follows from (3.10) and (3.12)

thaet e, =0 a.s. (in fact €n = O for n large enough). Hence

1n
VG;(Xn-X) and ¢G§(un—l) have the same asymptotic distributions.

o
.
s
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Since
i 2,
. > og p
2 and
T =T 5
n A’n-l
we obtain also
- £ C -1 -2 -k 2,
Va(T_-T,) S (0, (1-p)p T2 *(log p)°)
which is equivalent to (3.28).
Now consider the SA plan. Since Tn —’TL and T'i <. TA. < Th. there
exists a random variable N with P(N <) =1 such that, for all n >N,
™ <T +nlA (Y. -p) < T,
A n n''n A
and hence, by (3.21), for n> N,
T =T +n A (f -p)
n+l n n''n <7,
- S -ATy AT,
(3.32) =T +n An(§ e M)+
§ -1
=T -n (1+62n)(Tn-Tk) * W
vhere €, —0 a.s. as n -3,
‘ 2n
: Multiplying (3.32) by (n+l')7, rearranging terms and »rfiting
" temporarily
a Ry Fo
5 )(n =n (Tn TX) s
¥
3 we have
. .
; (3.33) X . = X,n (l-ﬁ-ean)xn + {n+l) LA

where € -0 a.s8..

3n

16:
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~(3.26)

If 7 < 1/2, then the argument we used to show that T,-T, =0

with T, -defined by (3.21) can be applied to the sequence [an as

given by (3.33) to show that X —0 a.s. as n —; hence

T -T, = o(n”"?) a.s., with y < 1/2, as n —»w .

(3.34)
Again, from (3.32)
(3.35) n(T,,)T,) =~(n-l)(fn-Tx) ‘e i
where

ey = mepy(2-T) = o((T,-1,)®),
as n »o. By (3.34)

[elml = O(n'27) a.8. as n -,

Iterating (3.35) back to n = N+1 and dividing by ¢/n , we get

) |
(D) VA, -m) = n Y Eeen) s 0 Y2 S e a2 Sk

N+1 N+1

Now

n-l/aN(TN-TX) -0 a.s. asn -,

and, by (3.36)

n .
n_l/2 Ye, 20 as. asnow .
Lx
N+1
Aleo,
n n’ : N
n3/2 kak=n'1/22kwk - n'llazkwk
N+1 1 . 1
and here
N.
) n.l/2 Yk Wk -0 a.s. as n —ow.
1. .

While by the central limit theorem from which (3.31) followé, ‘we have
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Thesé results.together.with (3.37) yield (3.28)‘aﬁd conclude the prbof
of the theorem. ' '

Since the two pldns have the same gé&mptotic distrgbution ﬁe'are
unable to decide between them on this basig. Ffom a practical point of.
view the SA plan seems preferable. It is not only computafionally
simpler but on eaéh step only the values of Tn and Yn are requi;ed.
in order to calculate Tn+1’ vhereas the entire past set of observations
is required in the case of the ML plan.
¥.. - | An important question at this point is whether oD Gl o
an adaptive plan with a smaller asymptotic variancé for /H(Tn'Th)
than that of the plans discussed. We state the following theorem ([6])
without proof.

Theorenm -3.5: For any plan I éuch that there exists a sequence of posi-

tive numbers [on(k)] such that on(x) -»0 as n -w and

PRV

: | o ‘on(})'l(Tn-Tx)‘—{a N(0,1)

(which implies that I is adaptive), we have

® . . ' 1
i lim inf ncxn(>~)2 > (1-p)p a2

n— oo

for all Xe(), ), except possiﬁly for A in a set of O lebesgue
4 measure. o ’ ' .i

This theorem states that it is essentially not possible to improve ; .

---on the ML and SA plans if the criterion used is the asymptotic variance

of yu (T-T,).

et g Ay
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4. Minimization of cost.

We shall now suppose that maintenancé of the éystem involies the
following costs: Each inspection costs ¢y units; repair of the system
if it is inoperative costs s units; and while the system is inopera-

tive a cost of c. units per unit time is incurred. In this section we

3
shall study the problem of choosing the inspection plan so as to minimiie

the long run expected cost per unit time.
More precisely, consider a plan I giving rise to inter-inspection

times [Ti] with assoclated inspection times t, = E TJ' Over the

. I<1
interval [0,t] the cost associated with plan I is

Ni NT
(4.1) e, +c, ¥ (Q-¥) +c(Yvw),
1t 2 =y i 3 151 i T)
where NT is defined by
(4.2) ty ST <ty
: T T .
and where V1 denotes the time the system has been inoperative over the

interval [ti_l,ti] and WT the time it has been inoperative during

[tN ,7].  Hence,the expected cost per unit time over the interval [0,7]

T

associated with plan I 1is

. N N | X

(kfj) - Q(I,X,T) =T "E iZl[cl+c2(l-Yi)+c5Vi] + T c3EwT .

We ‘also write

(4. h4) ¢(I,\) = lim sup C(I,A,7) .
X n— o

Within the class J no inspection plan exists having the property that
¢(I,x,T) is minimized for each T uniformly in M. We shall,therefofe,

use C(I,A) as a criterion for evaluating inspection plans. This

..
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criterion is closely related to one’ sug.gested by El‘e_h;[nger [4]..

Theorem 4.1:. For each A and for esch I,

*-1 ATF
+ T, [cl+d>\ (1-e

(4.5) C(10) > cg 530
wheré
(4.6) | a =cy- et

and TF is the unidue solution of the equation

(h.?) . 5 . e"xT(l-}-xT) =1 + Cld;l ;

if A< ca/(cl+c2) then O <T¥ <w ,

if x> ca/(cl+c2) then we take Tf = o

and in this case the second term in (4.5) should be interpreted as O.

Proof. Consider a fixed 7 and define variables Xi by

ba i

1l if T, <7
(4.8) X, = Jéi 3 =
' 0 otherwise .

Then (4.3) can be written

A1 e 21
T lE § Xi[cl+c2(l-Yi)+c3Vi] + 1 cBE‘tN,t

(4.9) = c(I,»,T)

i - _ -1
T %E .Xi[cl+c2(l-Y_i)+c3Vi] + T caEw,t .

Now

o E[x,(1-Y,)] E{E[xi(l-Yi)IYl;...,Yi_l,ml,..i,T1];~

E[xiE[(l-Yi)IYl,.,.,Yi_l,rl,...,Ti]]

Et-xi-(l-é’-_XTi)J ,

3
n

and similarly,

20
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CEXY, = EX (TN 1e )

11
At - ) XT
E[r-): Ty-A" Ha-e (T § )

Substituting into (4.9), we find_

(4.10) S C(I,nT) =c +7 2 E Xi[clﬂx(l-:-xTi)]
At -§ x,T
- cjx'l lE(l-e * % ) .

. : - AT
I %> cygf(e tc,), then c +d, >0, which implies that c +d, (1-e 1y > o.

Hence, dropping the second term on the right in (%.10), we obtain

-1
c(I,x,7) > c3-c3)» 'r

and (4.5) follows by letting T —»». In the remaining case A < c3/(c1+c2)
which implies c,+d, < 0. The function T-l[cl+dx(.l-e-)'T)] is minimized
by teking 'I' = TX, and, using (4.7), this minimum value becomes

- XT*

-1
(%.11) T; [cl+dx(l- ] = (cl+dx)x(l+).T*) .
From (4.10)
-AT* o .
-1 Ayq-1 : -1 -1
% - =
c(I,n,7) > o5 +T [cl+dx(l e )it ‘é ET, X;-cxh 7
‘and using the inequality
N
o -] T
-1 S | -1
7_.§EX1T1-ET Y X1, = Er §T1_<_l
together with (4.11) we have
1 s A T |
(k.12) C(I,)\.,.T) > c3+¢x [cl+d-x(l-e )] - ch T

from which (h.S)"'follows by letting 7 -,

21
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Equality in (h 5) is achieved if Ti = T¥ a.s. for all 1, so

that, 1f A were known this would constitute an optimal inspection plan

P,

9r A few properties of _Ti as a function of x are worth noting

Ti is continuous for 0<A < c3/(cl+e2) and Tiu—;+ © as A.-0

or c5/(c1+c2).- Algo T is bounded below by a positive constant;. in
fact, since . o '

=AT¥* ’
> l-XTi

it follows from (4.7) that

- R | g '
1T, <1+ cldk . : o

i.e.,

(4.13) 1‘*>(¢>~ dx)l/2>c 51 , E

for A< 03/ (cl+¢2 . Since,_. for A > c3/(c1+c2),_ TF = (%.13) holds

for all M. The general form of Ti’_is indicated in the following .

figure _ ' : |

>3
1]
8

G e - - -

. 5 ¥ — c3/(cl%c2) .i -3
Intuitively speéking, whenl A is émali, the system fails infre- 3_ , ,
quently so that one would expeet that the'hest inspection flen would R
; ' ..require infrequeht inspections; that is in aecordance with the behaviorg
5 8 o gf T{ --as M —O0. Also, if r becomes large, the system would.be

failihg at a high'rate If this rate is high enough, one would expect
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that 1t would be more economical to abandon the system and sustain the
cost c3 per unit time rather thap.té try to maintain the system..
Again, this is in accordance with_fhe 5ehavior of .T{ as X. increases
and, in fact, the critical value is X = c3/(cl+02).

Now we turn to fhe case where- A 1s unknown.
Definition: An 1nspgction plan I 41s said to be adaptive (relative to
o(z,0)) £ | |

~AT*

(4.1%) O(1,M) = ey + TF e 44, (1-e M.

>

Next we exhibit and discuss two adaptive plans.:.

(1) A Maximum Likelihood Plan..

Let {Sn} be an increasing sequence of positive numbers such that

5, @® 85 n -
and
e n -As
(%.15) minf n”*Ye 1>0
n— 1

for all Ae(\,X) and some «e(1/2,1). As an example of a sequence

satisfying these conditions, we mention
S, = 8 + B logn

where s >0 and B(>0) is such that AP + a < 1.
Now we define the following plan. Take- Tl = sl; after n steps

compute the maximum likelihood estimate Xn of X and then take
. . ’ = * .
(%.16) T min{ 5, +1,T)‘n]

We shall denote this plan again by ML but it should be noted that it

differs somewhat in spirit from the ML plan of section 3. The differences

23
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are due to the fact that we have no a priori upper bound on T¥. In

fact, if 53 hed defined T . = T;fn then A > cj/(.cl+c2) for some

. n (which has positive probabil.Lity of occurring even if A < c#(cl+c2))
wou}d imply Tn+1 = w, resulting in no fuz;'i-;her inspections and, in

. general, non-'adaptivify of the inspection plan. Hence it is.necessary
‘to control .'the rate at which [Tn} can increase and this i1s the purpose
of the szquence {Sn]'

Theorem 4.2: The ML plan is adaptive.

Proof. First we prove again that [Xn] is a strongly consistent sequence

of estimates-of M, i.e.,
)»n-)x a.8. as n - ,

This result is proved by the following slight modifications of the argu-
ment given in the proof of Theorem 3.2. By exactly the same reasoning

as that leading to (3.17) we obtain

(%.17) n{{a gnk(w) 50 as k 9o .

The lower bound on the first two terms on the right of (3.16) given

by (3.18) is replaced by

' -\
(4.18) 1

r -lnk
ap-2)"" Y e
1
in which we have used the fact that clc;L <T

.< s, which follows .

i 1

from (4.1%3) and (4.16).
Hence, dividing (3.16) by n: end letting k — « while using
(4.17) and (4.18) together with (4.15) we again obtain a contradiction.

Tt follows that )”n -\ a.s. as in Theorem 3.2. "I'his implies that

24

WL W L L
PO

B i I I s W




B - il

&

Tn_)T;f 8.5 asln—‘wo

and this in turn iniplies that

’r-:LN,r - 'I.'{-l a.s8.

‘N
1 X AT _ -AT : .
and T.l Y (1-e 1) -»T; l(l-e f) a.s. as T —o,
l .
N
T - o
Since = Zg Ti' > N,rclc3 we have
-1 -1
‘T N < cjcl
and
-1 MTy -1 -1
Z(l-e )<1- N<c5<:l.

ﬁence by the dominated convergence theorem
BN -7t
T A
. and
1 N‘f " AT .-
Er” % (1-e 1) -»_T;f‘l(l-e )

.as T »w. By (4.10),

T AT
-1 -1
c(ML,2,T) =. ¢ + clE'r N'r + d)\ET 3 § (1-e i)
. Ni :
Al =Y 1)
- cjx-l'r-lE(l-e T 1

and letting T —w 1t follows from the results above that (4.1k)
holds. ° 2o 08"

"(11) A Stochastic Approximation Flan.

Unfortunately T;\"' cannot be characterized independently of the

unknown XA as was possible for T)\. Consequently, construction of

25
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suitable inspection plaﬁs using stochas:tic approximation methoéls becomes
mo.re difficu_lt. We s‘hall discuss such a plan using ;3. sequénce of estimates
of A based on a stochastic approximation method closely related to that

"used to estimate Tx in section 3. The relation between these methods will
be indicated below.

Let (sn] again be an increasing sequence of numbers such that,

for a1l Ae(),X)

(4.19) 2 n-2e2)‘sn < o
n
and.

Sn"’°° as n s, ,

An example of a sequence satisfying these conditions is again

sn=s+ﬁlogn

wvhere s >0 and B is such that 0 <28\ < 1.

Now, let T, = s, end let Ay De erbitrary in the interval

-

(A,%). Having defined TyseeesTps Mpseenshy we let

n
AT
— - n'n
)‘n+l_ = max{_):,min()»,)»n-n 1Bn(Yn-e .)}]
and
(4.20) Tn+1 = min{sn_*_l,T;“' }
n+l
where .
AT
. ml _nn
Brl = Tn e o

We shall denote this plan by SA. In order to see the relation be-
-tween this plan and the SA plan of section 3 defined by (3.21), let us.

ignore, for the moment, the truncation of (Tn] to the interval [TX"TX]'

26

R EE P (XN A BN

b




o S

-
e ot

Then (3.21) gives approximately
S AT

¥ . _ -1 RN
! 5 Tep =Ty * 0 An'(Yn'e ) .
® |
. B Taking inverses, we get, approximately
' _ ~AT
iy -1 -1, <1 -2 TN
B =T 7"+ - o
. ; Tn+1 Tn"? 5 AnTn (Yn € )
;l Since )'n = -_T;l log p, we then have approximately
! ; . a _l _2 -XTX
,‘ (4.21) Mg =Mt R AT (log.p)(Yn-e ) ..
; | - .
| . 4 T
p _ R -1 _ -.-1 n .
) Since log p = -)»T)L and An = ’p lxn = )'n e »
“
AT
& -2, _ -1 =1y.-1 “th
i (4.22) AT “log p = -(xxn )(T)‘Tn )Tn e 5
TR :
:; . Comparing (%.21) ard (4.22) we see that the two iterative relations
: ‘ defining (A ) differ only in that A and T, in (4.21) have been
’i i replaced by the estimates A ~and T .
Ny ' ’
R Theorem 4.3: The plan SA is adaptive.
ol ¢ _ : .
i Proof. It suffices again to show that A -\ a.s. as n 2w.
o
. First we let
1 1
i1, -AT
i W o=nlB (Y- D).
T n n''n
3
Iy Then
E(W, Wy, e W 1) =0
q and
i ' o MD AAT,
; Yar(wn) =n ._E(Bne (1-e )}
20T -AT
< n-2E(T;2e n .ne n}
< n"2e22 Mn
< 3¢y € .
J ,
- AT LN a = 5 I RN R T Sho - ¥ - .
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| % . By (4.19) : . R . -
l‘ 2 Var(W ) <=, : T : . A
4, n oat S 9
§ o - “
. and it follows again from Theorem D, p. 387 of [7] that W converges
8.5« Further; : . <
§ . ’ . As 1
“ -1 - -1 ""n
\ ‘ n Bn <n «':_3(::L e =0 as n -w J
"i : .
; _ and, for )»n-k > €, . ] ]
. AT AT .
/ YR le e M) ;
: !
' ' AT (A -A)T !
S =_z n ane noe B m1)
: -2 T -
>y nlge Pheop
- n n
>e) ot
, | =@ . :
i ,
E‘ With these three facts in hand an analog of .the proof of theorem
] . _
f . 3.3 can be given to show that xn —A a.s. as n -»«. We shall not
2 8 ~
i give the details again.
One possible way to compare adaptive plans is, as in section 3, to

i compare the asymptotic distributions of Tn and choose that with the
i
? smallest asymptotic variance.
:{ Theorem 4.%: For both the ML and the SA plans we have
-, ]
§ ; .
| : (1) 1f r» < cj/(cl+§2) then
! E
; § = £ XT;S *=-1 dT;: 2 '
\ it ~I¥* - 2] ,
.-ﬂ VA(T,TR) SN0, (e 1) (B 557)°) ;
k and . ' ;
‘ ' i q 8 2 . : AT* ’
R ,[H(xn-x) ﬁn(o,(e "-1)T;',2) ; ;
; . % 28 , '
: o .
'-i R ;
3 ;.«., & .
i
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(11) if A > cj/(c1+c2) then, with probebility 1, for all n

sufficiently large,

L

Proof. (i) For the first part the proof is quite analogous to that of

Theorem 3.4 and we orit the details.
(11) Since A -\ > ca/(c +c2) a.s., we have, for all n
sutficiently large,

% =
TX =cw i.e., Tn

=min(5,T*)=5 .
- . n Xn

n

This theorem indicates that these two plans are again asympototically
equivalent and the SA pian scems to be preferable only in that it involves
somewhat simpler computatiéns.: It 1s.still true that the SA plan reQui;es
the calculation of T{, thus fequifing the solution of equation (h.Y).at'

each step. It is possible to introduce a plan that will also simplify

this calculation by using an approximation method.

At present 1t:1s not known vhether the two plans considered have an
optimum property of the type possessed by the equivalent plans in the

previous section as indicated by Theorem 3.5.

5. ﬁxtgnsions.
We are now considering the extension of theée résults aiong the
following linec:
(1) Replacemént'of the éxponenfial diétribution by a more géneral :
failure distribution. . .
(11) Other types of cost functions.
(1ii) Constraints on the inspection times.

This list obviously does not exhaust all possibiiities.
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